Asymptotic bounds of depth for the reversible circuit consisting of NOT, CNOT and 2-CNOT gates
نویسنده
چکیده
The paper discusses the asymptotic depth of a reversible circuit consisting of NOT, CNOT and 2-CNOT gates. Reversible circuit depth function $D(n, q)$ for a circuit implementing a transformation $f\colon \mathbb Z_2^n \to \mathbb Z_2^n$ is introduced as a function of $n$ and the number of additional inputs $q$. It is proved that for the case of implementing a permutation from $A(\mathbb Z_2^n)$ with a reversible circuit having no additional inputs the depth is bounded as $D(n, 0) \gtrsim 2^n / (3\log_2 n)$. It is proved that for the case of implementing a transformation $f\colon \mathbb Z_2^n \to \mathbb Z_2^n$ with a reversible circuit having $q_0 \sim 2^n$ additional inputs the depth is bounded as $D(n, q_0) \lesssim 3n$.
منابع مشابه
On Asymptotic Gate Complexity and Depth of Reversible Circuits Without Additional Memory
Reversible computation is one of the most promising emerging technologies of the future. The usage of reversible circuits in computing devices can lead to a significantly lower power consumption. In this paper we study reversible logic circuits consisting of NOT, CNOT and 2-CNOT gates. We introduce a set F (n, q) of all transformations Zn2 → Z n 2 that can be implemented by reversible circuits ...
متن کاملGeneral Upper Bounds for Gate Complexity and Depth of Reversible Circuits Consisting of NOT, CNOT and 2-CNOT Gates
В работе рассматривается вопрос сложности и глубины обратимых схем, состоящих из функциональных элементов NOT, CNOT и 2-CNOT, в условиях ограничения на количество используемых дополнительных входов. Изучаются функции Шеннонa сложности L(n, q) и глубины D(n, q) обратимой схемы, реализующей отображение f : Z2 → Z n 2 , при условии, что количество дополнительных входов q находится в диапазоне 8n <...
متن کاملOn Synthesis of Reversible Circuits with Small Number of Additional Inputs Consisting of NOT, CNOT and 2-CNOT Gates
В работе рассматривается вопрос сложности обратимых схем, состоящих из функциональных элементов NOT, CNOT и 2-CNOT и имеющих малое число дополнительных входов. Изучается функцииШеннонa сложности L(n, q) обратимой схемы, реализующей отображение f : Zn2 → Z n 2 , при условии, что количество дополнительных входов q 6 O(n). Доказывается оценка L(n, q) ≍ n2n / log 2 n для указанного диапазона значен...
متن کاملQuantum Circuit Optimization by Hadamard Gate Reduction
Due to its fault-tolerant gates, the Clifford+T library consisting of Hadamard (denoted by H), T , and CNOT gates has attracted interest in the synthesis of quantum circuits. Since the implementation of T gates is expensive, recent research is aiming at minimizing the use of such gates. It has been shown that T -depth optimizations can be implemented efficiently for circuits consisting only of ...
متن کاملOn Asymptotic Gate Complexity and Depth of Reversible Circuits With Additional Memory
The reversible logic can be used in various research areas, e. g. quantum computation, cryptography and signal processing. In the paper we study reversible logic circuits with additional inputs, which consist of NOT, CNOT and C2NOT gates. We consider a set F (n, q) of all transformations Bn → Bn that can be realized by reversible circuits with (n+q) inputs. An analogue of Lupanov’s method for t...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- CoRR
دوره abs/1501.04344 شماره
صفحات -
تاریخ انتشار 2015